Solution to Algebra I- MS- 15.pdf

- (1a) Given that A, B are subgroups of G such that $A \subseteq N_G(B)$. We first show that $A \cap B \triangleleft A$. Let $g \in A \cap B$ and $a \in A$ then, clearly $aga^{-1} \in A$ and as $A \subseteq N_G(B)$, $aBa^{-1} = B$ for every $a \in A$ one has, $aga^{-1} \in B$ B as well. Thus $A \cap B \triangleleft A$. Now, $AB = \{ab \mid a \in A, b \in B\}$ is a group as $e \in AB$, for $a_1b_1, a_2b_2 \in AB$, $a_1b_1a_2b_2 = a_1a_2(a_2^{-1}b_1a_2)b_2 =$ $a_1a_2b_3b_2$ where $a_2^{-1}b_1a_2 = b_3 \in B$ and finally, $ab(a_0b_0)^{-1} = abb_0^{-1}a_0^{-1} =$ $aa_0^{-1}(a_0bb_0^{-1}a_0^{-1}) = aa_0^{-1}b_1 \in AB$ where $a_0bb_0^{-1}a_0^{-1} = b_1 \in B$. Also, $B \triangleleft AB$ since $abB(ab)^{-1} = abBb^{-1}a^{-1} = aBa^{-1} = B$ as $A \subseteq N_G(B)$. We now define $\phi : A/A \cap B \longrightarrow AB/B$ as $\phi(aA \cap B) = aB$. This ,map is well defined for if $a_1^{-1}a_2 \in A \cap B$ then $a_1^{-1}a_2 \in B$. It also maps cosets to cosets, in fact, if $a_1, a_2 \in aA \cap B$ then $a_1^{-1}a_2 \in B$ so that $a_1, a_2 \in aB$. Observe that ϕ is a homomorphism, $\phi((aA \cap B)(bA \cap B)) = \phi(abA \cap B) =$ $abB = aB \ bB = \phi(aA \cap B)\phi(bA \cap B)$. It remains to show that ϕ is a bijection. Suppose $\phi(aA \cap B) = \phi(bA \cap B) \Longrightarrow aB = bB \Longrightarrow a^{-1}b \in B$ but $a, b \in A$ implies $a^{-1}b \in A$. So, $a^{-1}b \in A \cap B \Longrightarrow aA \cap B = bA \cap B$. This proves injection. Suppose $gB \in AB/B$, this implies g = ab for some $a \in A, b \in B$ so that $gB = abB = aB \Longrightarrow gB = \phi(aA \cap B)$. Thus, ϕ is a surjection and hence an isomorphism.
- (1b) $N \triangleleft G$ with |G/N| = p and $H \leq G$. Suppose $H \not\subseteq N$. As N is normal in G, and H is a subgroup of G, we conclude $H \subseteq N_G(N)$, $NH \leq G$ and by 1(a) $H \cap N$ is normal in H. Now, p = [G : N] = [G : NH][NH : N]. We claim that [NH : N] = p so that [G : NH] = 1 giving G = NH. Suppose [NH : N] = 1.cOne has in the finite order case, by the isomorphism in (1a), $|NH| = |N||H|/|N \cap H| \Longrightarrow |H| = |H \cap N|$. This gives $H/H \cap N$ is trivial, *i.e.*, $H = H \cap N \subseteq N$. This is a contradiction to our assumption $H \notin N$. Thus, G = NH and $[H : H \cap N] = [NH : N] = p$.
- (2a) Statement of Cayley's theorem: Any group G is isomorphic to a subgroup of a permutation group.

Proof: Let G be a group. Let F be the set of all permutations (one-one functions) on elements of G. Then F is a group with the groups operation being function composition. Indeed, Function composition is associative and closed, the identity map being one-one belongs to F, for $f \in F$, if f(x) = y then the inverse of f is f^{-1} which maps $f^{-1}(y) = x$. Clearly, $f^{-1} \in F$. Thus, F is a group. Now, for any element $g \in G$, consider the map $f_g(x) = gx$ for all $x \in G$. One has $f_g \in F$. Further, as $gh \in G$, we have $f_{gh} \in F$ and also $f_e \in F$ where e is the identity in G. Observe that $f_{gh}(x) = ghx = g(hx) = g(f_h(x)) = f_g f_h(x)$. Thus the set $\{f_g \mid g \in G\}$ is a subset of F which is closed and so is a subgroup of F. Clearly, G is isomorphic to this subgroup.

- (2b) Let G be a finite group of order n, p be the smallest prime dividing n and let N be a subgroup of G of index p. To show that $N \triangleleft G$. Now, G acts on the left coset space G/N by left multiplication, $g \cdot aN = gaN$. As the index is p, we get a homomorphism ϕ of G into S_p , the symmetric group on p elements. The kernel K of ϕ is the set of all elements of G inducing trivial action on G/N and so $K \subset N$. One has G/K is isomorphic to a subgroup of S_p . This implies its order is a divisor of p!. But the order of G/K also divides G and as p is the smallest prime dividing o(G), we have o(G/K) = p. One has $p = [G : K] = [G : N][N : K] = p[N : K] \Longrightarrow [N :$ K] = 1, so that <math>N = K is normal subgroup of G.
- (3a) We exhibit a one-to-one correspondence between Orb(x) and the left cosets of G_x in G. To the coset $gG_x \in G/G_x$, we associate the element $gx \in$ Orb(x). This association is well defined for, if $gG_x = hG_x$ then, $g^{-1}h \in$ $G_x \Longrightarrow g^{-1}hx = x \Longrightarrow hx = gx$. Now, suppose gx = hx, then $g^{-1}hx =$ $x \Longrightarrow g^{-1}h \in G_x \Longrightarrow gG_x = hG_x$. Thus, the association is one-toone. If $h \in Orb(x)$ then, h = gx for some $g \in G$ so that the coset gG_x gets associated to h. This proves surjection. We thus have a one-one correspondence between two finite sets which implies that they have the same cardinality.
- (3b) Let n be the number of orbits of G-action on X. By orbit stabilizer theorem the size of an orbit \mathcal{O} is given by $|\mathcal{O}| = |G|/|G_x|$ for some $x \in \mathcal{O}$ where $G_x = \{g \in G \mid g \cdot x = x\}$. This implies $|G_x| = |G|/|\mathcal{O}|$. Taking sum over $x \in \mathcal{O}, \sum_{x \in \mathcal{O}} |G_x| = |\mathcal{O}||G|/|\mathcal{O}| = |G|$. Thus the sum over all orbits is given by $\sum_{x \in X} |G_x| = |G|n \Longrightarrow n = \sum_{x \in X} |G_x|/|G|$. Consider the set $G \times X := \{(g, x) \mid g \in G, x \in X\}$ and let $G_0 := \{(g, x) \mid g \cdot x = x\} \subset G \times X$. Then $|G_0| = \sum_{x \in X} |G_x| = \sum_{g \in G} |X^g|$ where $X^g = \{x \in X \mid g \cdot x = x\}$. Thus, $n = \sum_{g \in X} |X^g|/|G|$.
- (4a) Statement: Let G be a finite group. The action of G on itself by conjugation partitions G into disjoint conjugacy classes. Let $g_1, ..., g_r$ be the representatives of the distinct conjugacy classes of G not contained in the center r

Z(G) of G. Then the class equation is given by $|G| = |Z(G)| + \sum_{i=1}^{n} [G : C_i]$

 $\begin{array}{l} C_G(g_i)] \text{ where } C_G(g_i) \text{ is the centralizer of } g_i \text{ in } G. \\ Proof: \text{ An element } \{x\} \text{ is a conjugacy class of size 1 if and only if } x \in Z(G). \\ \text{Let } Z(G) = \{e, z_1, ..., z_m\} \text{ and let } \mathcal{O}_1, ..., \mathcal{O}_r \text{ be the conjugacy classes of } G \\ \text{not contained in } Z(G) \text{ having } g_1, ..., g_r \text{ as the respective representatives.} \\ \text{Then } \{\{e\}, \{z_1\}, ..., \{z_m\}, H_1, ..., H_r\} \text{ gives a partition of } G. \text{ We thus have } \\ |G| = \sum_{i=1}^m 1 + \sum_{i=1}^r |H_i| = |Z(G)| + \sum_{i=1}^r [G: C_G(g_i)]. \end{array}$

(4b) (i) We prove this using induction on |G| = n. As p | n, when |G| = n = p, any element of G has order p. Now suppose |G| = n₀ > p with p | n₀ and we assume the induction hypothesis that for a group G with order n < n₀ such that p | n, G has an element of order p. Since |G| = n₀ is not a prime, G has a nontrivial proper subgroup H. We have |G| = |H| · [G : H] which implies that either p | |H| or p | [G : H]. If p | |H|, by induction hypothesis we are done. We show that the other possibility does not occur. The center Z(G) is a

proper subgroup of G. For each $g \in G$, the centralizer $Z_G(g) = \{h \in G \mid hg = gh\}$ of g in G is a proper subgroup of G if $g \notin Z(G)$. If $p \mid |Z_G(g)|$ for some $g \notin Z(G)$, we are done by induction hypothesis. Also, if $p \mid |Z(G)|$, we are done. Now, if the conjugacy classes of size greater than 1 are represented by $g_1, ..., g_r$, by class equation we have $|G| = |Z(G)| + \sum_{i=1}^{r} [G : Z_G(g_i)] = |Z(G)| + \sum_{i=1}^{r} |G|/|Z_G(g_i)|$. The case when p does not divide any $|Z_G(g_i)|$ results in each index $[G : Z_G(g_i)]$ being divisible by p. Hence, the remaining term |Z(G)| will also be divisible by p. That is either p divides |Z(G)| or $p \mid |Z_G(g_i)|$ for some $g \notin Z(G)$. We are done here by induction hypothesis.

- (ii) G acts on itself by self conjugation. Let $\mathcal{O}_1, ..., \mathcal{O}_r$ be the various distinct orbits of G. As G is a p-group, the order of each orbit is either 1 or power of p. By class equation $|G| = \sum_{i=1}^{r} |\mathcal{O}_i|$. The conjugacy classes having single elements are those of elements belonging to the center Z(G). Now, LHS is divisible by p and so should be RHS. Thus, the number of single element conjugacy classes is a multiple of p, giving a nontrivial center.
- (5a) Sylow's first theorem:Let G be a finite group. If p is a prime divisor of |G| then there exists a p-Sylow subgroup of G. Sylow's second theorem: Let G be a group of order $p^n q$ where p is a prime not dividing q. If P is a p-Sylow subgroup of G and H is any subgroup of G of order a power of p then $H \subseteq xPx^{-1}$ for some $x \in G$. In particular, any two p-Sylow subgroups of G are conjugates. Sylow's third theorem: The number of p-Sylow subgroups of G divides |G| and is of the form 1 + kp for some non-negative integer k.
- (5b) Let G be a group of order $224 = 2^5 \cdot 7$. The number n_2 of 2-Sylow subgroups is such that $n_2 \mid 7$ and $n_2 \equiv 1 \pmod{2}$. Similarly, the number n_7 of 7-Sylow subgroups of G is such that $n_7 \mid 2^5$ and $n_7 \equiv 1 \pmod{7}$. Thus $n_2 = 1$ or 7 and $n_7 = 1$ or 8. Suppose G was simple, then $n_7 = 8$ and $n_2 = 7$. Then there are $(7 - 1) \cdot 8 = 48$ elements of order 7 and $(2^5 - 1) \cdot 7 = 31 \cdot 7 = 217$ elements of order 2 in G. This gives us a total of 266 elements in G including identity which is a contradiction to |G| = 224. Hence, G is not simple as we must have either $n_2 = 1$ or $n_7 = 1$.
- (6a) Let $G = A_5$ then, $|G| = 60 = 2^2 \cdot 3 \cdot 5$. By Sylow's third theorem we have $n_3 \mid 2^2 \cdot 5$ and $n_3 \equiv 1 \pmod{3}$, so that $n_3 \in \{1, 4, 10\}$. But G contains 20 elements of order 3 $(5C_3)$ which implies $n_3 = 10$. Let n_5 be the number of 5-Sylow subgroups of A_5 then, $n_5 \mid 2^2 \cdot 3$ and $n_5 \equiv 1 \pmod{5}$ so that $n_5 \in \{1, 6\}$. But A_5 has 24 elements of order 5, giving $n_5 = 6$. Finally, let n_2 be the number of 2-Sylow subgroups of A_5 . Then, $n_2 \mid 3 \cdot 5$ and $n_2 \equiv 1 \pmod{2}$ so that $n_2 \in \{1, 3, 5, 15\}$. Now, A_5 has 15 elements of order 5 which implies $n_2 \in \{5, 15\}$. If $n_2 = 15$ and H is a 2-Sylow subgroup of A_5 then, as A_5 acts on the 2-Sylow subgroups by conjugation, the stabilizer Stab(H) of H has index 15 in A_5 . This implies $H = Stab(H) = N_{A_5}(H)$. This is not true as $(1, 2, 3) \in N_{A_5}(H) \smallsetminus H$. Hence, $n_2 = 5$.
- (6b) The 3-Sylow and 5-Sylow subgroups of S_5 are contained in A_5 so that $n_3 = 10$ and $n_5 = 6$. A 2-Sylow subgroup of S_5 has order 8. One has $n_2 \mid 15$ and $n_2 \equiv 1 \pmod{2}$ so that $n_2 \in \{1, 3, 5, 15\}$ and as in the case of

 $A_5, n_2 \in \{5, 15\}$. Permutation on the set $\{1, 2, 3, 4\}$ gives a copy of D_8 inside S_5 which is a 2-Sylow subgroup of S_5 . Thus all 2-Sylow subgroups are isomorphic to D_8 . Now, 4 elements can be chosen in 5 distinct ways from $\{1, 2, 3, 4, 5\}$. Further, for each choice of 4 elements we have 3 distinct dihedral groups (cyclic permutations results in the same copy of D_8 and so does orderings of the form 1,2,3,4 and 1,4,3,2). We then have $n_2 = 5 \cdot 3 = 15$ distinct subgroups of order 8 isomorphic to D_8 .

- (7a) Given two groups H and K with a group homomorphism $\phi : H \longrightarrow Aut(K)$ then, the semi-direct product of K by H is denoted $K \rtimes_{\phi} H$ and is defined as the set $K \times H$ together with the operation $(k,h) \cdot (k_1,h_1) = (k\phi(h)k_1,hh_1)$ such that $(K \times H, \cdot)$ is a group. Evidently, the group operation is very much dependent on the homomorphism ϕ .
- (7b) Let $K = \mathbb{Z}_n = \langle x \rangle$ and $H = \mathbb{Z}_2 = \langle a \rangle$. Consider the homomorphism $\phi: H \longrightarrow Aut(K)$ given by $\phi(a) = \phi_a$ where $\phi_a(x) = axa^{-1}$ for $x \in K$. It is easy to see that ϕ is a group homomorphism and the semidirect product $G = K \rtimes_{\phi} H$ is a group with the group operation as in (7a). We assert that $D_{2n} \cong G$. Let $\{(r,m) \mid r^n = m^2 = 1, rm = mr^{-1}\}$ be the presentation of D_{2n} . Since K is a subgroup of index 2 in G, we have $a \cdot x = axa^{-1} = x^{-1}$ for all $a \in H, x \in K$. Hence, $a^2xa^{-1} = ax^{-1}$. As |H| = 2, $a^2 = 1$ or $a = a^{-1}$, we have $a^2xa^{-1} = xa$ and $xa = ax^{-1}$. Consequently, the isomorphism of D_{2n} with $\mathbb{Z}_n \rtimes_{\phi} \mathbb{Z}_2$ is given by the mapping $x \longmapsto r$ and $a \longmapsto m$.