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Given that A, B are subgroups of G such that A C N¢g(B). We first show
that ANB <A Let g € ANDB and a € A then, clearly aga™! € A
and as A C Ng(B), aBa™! = B for every a € A one has, aga™! €
B as well. Thus AN B < A. Now, AB = {ab | a € Ajb € B} is a
group as e € AB, for a1by,asby € AB, aibiashby = alag(aglblag)bg =
ajazbsby where a2_1b1(12 = b3 € B and finally, ab(agby) ™! = abbo_laa1 =
aay (agbby tag') = aay'by € AB where agbbytayt = by € B. Also,
B <1 AB since abB(ab)™! = abBb~'a™! = aBa™! = B as A C Ng(B).
We now define ¢ : A/ANB — AB/B as ¢(aA N B) = aB. This ;map
is well defined for if aflag € AN B then aflag € B. It also maps cosets
to cosets, in fact, if a1,as € aAN B then al_lag € B so that ay,as € aB.
Observe that ¢ is a homomorphism, ¢((aANB)(bANB)) = ¢p(abANB) =
abB = aB bB = ¢(aA N B)p(bAN B). It remains to show that ¢ is a
bijection. Suppose ¢(aAN B) = ¢(bAN B) = aB = bB = a b € B
but a,b € A implies a='b € A. So,a " 'b € ANB = aANB =0bANB.
This proves injection. Suppose gB € AB/B, this implies g = ab for some
a € A,b € B so that gB = abB = aB = gB = ¢(aAN B). Thus, ¢ is a
surjection and hence an isomorphism.

N < G with |G/N| =p and H < G. Suppose H ¢ N. As N is normal in
G, and H is a subgroup of G, we conclude H C Ng(N), NH < G and by
1(a) HN N is normal in H. Now, p =[G : N] =[G : NH|[NH : N]. We
claim that [NH : N] = p so that [G: NH] =1 giving G = NH. Suppose
[NH : N] = 1.cOne has in the finite order case, by the isomorphism in
(1a), INH| = |N||H|/INNH| = |H| = |HNN|. This gives H/HN N is
trivial, i.e., H = H NN C N. This is a contradiction to our assumption
H¢ N. Thus, G=NH and [H: HNN] = [NH : N] =p.

Statement of Cayley’s theorem: Any group G is isomorphic to a subgroup
of a permutation group.

Proof: Let G be a group. Let F' be the set of all permutations (one-one
functions) on elements of G. Then F is a group with the groups operation
being function composition. Indeed, Function composition is associative
and closed, the identity map being one-one belongs to F, for f € F, if
f(x) = y then the inverse of f is f~! which maps f~!(y) = z. Clearly,
f~t € F. Thus, F is a group. Now, for any element g € G, consider the
map fq(x) = gz for all x € G. One has f, € F. Further, as gh € G, we
have fg, € F' and also f. € F' where e is the identity in G. Observe that
fon(x) = gha = g(hz) = g(fn(x)) = fofn(z). Thus the set {f, | g € G}
is a subset of F' which is closed and so is a subgroup of F. Clearly, G is
isomorphic to this subgroup.
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Let G be a finite group of order n, p be the smallest prime dividing n and
let N be a subgroup of G of index p. To show that N <« G. Now, G acts
on the left coset space G/N by left multiplication, g - aN = gaN. As the
index is p, we get a homomorphism ¢ of G into S, the symmetric group
on p elements. The kernel K of ¢ is the set of all elements of G inducing
trivial action on G/N and so K C N. One has G/K is isomorphic to a
subgroup of S,,. This implies its order is a divisor of p!. But the order of
G/K also divides G and as p is the smallest prime dividing o(G), we have
o(G/K)=p. Onchasp=[G: K] =[G: N|[N: K] =p[N: K] = [N :
K] =1, so that N = K is normal subgroup of G.

We exhibit a one-to-one correspondence between Orb(z) and the left cosets
of G, in G. To the coset gG, € G/G,, we associate the element gz €
Orb(z). This association is well defined for, if gG, = hG, then, g~1h €
Gy = g 'hx = © = ha = gz. Now, suppose gz = hx, then g thx =
r = g 'h € G, = ¢gG, = hG,. Thus, the association is one-to-
one. If h € Orb(zx) then, h = gz for some g € G so that the coset gG,
gets associated to h. This proves surjection. We thus have a one-one
correspondence between two finite sets which implies that they have the
same cardinality.

Let n be the number of orbits of G-action on X. By orbit stabilizer
theorem the size of an orbit O is given by |O| = |G|/|G| for some z € O
where G, = {g € G | g-« = «}. This implies |G| = |G|/|O|. Taking sum
over v € O, Y - |Gz| = |O||G|/|O| = |G|. Thus the sum over all orbits
is given by > 5 |Gz = |GIn = n =} .« |G.|/|G]|. Consider the set
GxX ={(9,2) | g € G,z € X}andlet Gy := {(g,2) | gz =2} C Gx X.
Then |Gol = 3 cx |Gal = - cq | X9| where X9 ={z € X | g-z = z}.

Thus, n = dex | X91/|G].

Statement: Let G be a finite group. The action of G on itself by conjuga-
tion partitions G into disjoint conjugacy classes. Let g1, ..., g, be the repre-
sentatives of the distinct conjugacy classes of G not contained in the center

Z(G) of G. Then the class equation is given by |G| = |Z(G)| + >[G :
i=1

Ca(gi)] where Cg(g;) is the centralizer of g; in G.

Proof: An element {z} is a conjugacy class of size 1 if and only if z € Z(G).
Let Z(G) ={e, z1, ..., zm } and let Oy, ..., O, be the conjugacy classes of G
not contained in Z(G) having g1, ..., g» as the respective representatives.
Then {{e},{z1}, ..., {zm}, H1, ..., H.} gives a partition of G. We thus have

Gl = ;1 + ; [Hi| = |Z2(G)| + ;[G : Calgi)]-

(i) We prove this using induction on |G| = n. As p | n, when |G| =
n = p, any element of G has order p. Now suppose |G| = ng > p
with p | ng and we asuume the induction hypothesis that for a group
G with order n < mg such that p | n, G has an element of order p.
Since |G| = ng is not a prime, G has a nontrivial proper subgroup
H. We have |G| = |H| - [G : H] which implies that either p | |H]|
orp | [G: H]. If p||H]|, by induction hypothesis we are done. We
show that the other possibility does not occur. The center Z(G) is a
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proper subgroup of G. For each g € G, the centralizer Z¢(g) = {h €
G | hg = gh} of g in G is a proper subgroup of G if g ¢ Z(G). If
p | |Zc(g)| for some g ¢ Z(G), we are done by induction hypothesis.
Also, if p | | Z(G)|, we are done. Now, if the conjugacy classes of size
greater than 1 are represented by g1, ..., g, by class equation we have
Gl = |Z(G) + X [G : Zalgs)] = |Z(G)] + X1y 1GI/|Zc(gy)]. The
case when p does not divide any |Zg(g;)| results in each index [G :
Zc(g:)] being divisible by p. Hence, the remaining term |Z(G)| will
also be divisible by p. That is either p divides |Z(G)| or p | | Zc(g:)]
for some g ¢ Z(G). We are done here by induction hypothesis.

(ii) G acts on itself by self conjugation. Let Oi,...,O, be the various
distinct orbits of G. As G is a p-group, the order of each orbit is either
1 or power of p. By class equation |G| = >_._, |O0;]. The conjugacy
classes having single elements are those of elements belonging to the
center Z(G). Now, LHS is divisible by p and so should be RHS.
Thus, the number of single element conjugacy classes is a multiple of
p, giving a nontrivial center.

Sylow’s first theorem:Let G be a finite group. If p is a prime divisor of |G|
then there exists a p-Sylow subgroup of G.

Sylow’s second theorem: Let G be a group of order p™q where p is a prime
not dividing ¢. If P is a p-Sylow subgroup of G and H is any subgroup of
G of order a power of p then H C zPz~! for some x € G. In particular,
any two p-Sylow subgroups of G are conjugates.

Sylow’s third theorem: The number of p-Sylow subgroups of G divides |G|
and is of the form 1 + kp for some non-negative integer k.

Let G be a group of order 224 = 2°.7. The number ny of 2-Sylow
subgroups is such that ny | 7 and ny = 1(mod 2). Similarly, the number
ny of 7-Sylow subgroups of G is such that n7 | 2° and n; = 1(mod 7).
Thus no = 1 or 7 and ny = 1 or 8. Suppose GG was simple, then n; = 8
and ng = 7. Then there are (7 — 1) - 8 = 48 elements of order 7 and
(2°—1)-7=31-7 = 217 elements of order 2 in G. This gives us a total of
266 elements in G including identity which is a contradiction to |G| = 224.
Hence, G is not simple as we must have either no =1 or ny = 1.

Let G = Aj then, |G| = 60 =22 .3 5. By Sylow’s third theorem we have
ng | 22 -5 and n3 = 1(mod 3), so that ng € {1,4,10}. But G contains 20
elements of order 3 (5C3) which implies n3 = 10. Let ns be the number
of 5-Sylow subgroups of As then, ns | 22 -3 and ns = 1(mod 5) so that
ns € {1,6}. But A5 has 24 elements of order 5, giving ns = 6. Finally,
let no be the number of 2-Sylow subgroups of As. Then, ny | 3 -5 and
ng = 1(mod 2) so that ny € {1,3,5,15}. Now, A5 has 15 elements of order
5 which implies no € {5,15}. If ng = 15 and H is a 2-Sylow subgroup of As
then, as As acts on the 2-Sylow subgroups by conjugation, the stabilizer
Stab(H) of H has index 15 in As. This implies H = Stab(H) = N4, (H).
This is not true as (1,2,3) € N4, (H) ~ H. Hence, nz = 5.

The 3-Sylow and 5-Sylow subgroups of S; are contained in As so that
ng = 10 and n5 = 6. A 2-Sylow subgroup of S5 has order 8. One has
ng | 15 and ny = 1(mod2) so that ny € {1,3,5,15} and as in the case of
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As, no € {5,15}. Permutation on the set {1,2,3,4} gives a copy of Ds
inside S5 which is a 2-Sylow subgroup of S5. Thus all 2-Sylow subgroups
are isomorphic to Dg. Now, 4 elements can be chosen in 5 distinct ways
from {1,2,3,4,5}. Further, for each choice of 4 elements we have 3 distinct
dihedral groups (cyclic permutations results in the same copy of Dg and
so does orderings of the form 1,2,3,4 and 1,4,3,2). We then have ny =
5 -3 = 15 distinct subgroups of order 8 isomorphic to Ds.

Given two groups H and K with a group homomorphism ¢ : H —
Aut(K) then, the semi-direct product of K by H is denoted K x, H and
is defined as the set K x H together with the operation (k,h) - (k1,h1) =
(kd(h)k1, hhy) such that (K x H,-) is a group. Evidently, the group
operation is very much dependent on the homomorphism ¢.

Let K =Z, =<x > and H = Zs =< a >. Consider the homomorphism
¢ : H — Aut(K) given by ¢(a) = ¢, where ¢,(z) = ava™" for z € K. It
is easy to see that ¢ is a group homomorphism and the semidirect product
G = K x4 H is a group with the group operation as in (7a). We assert that
Ds, 2 G. Let {(r,m) | r™ =m? = 1,rm = mr~1} be the presentation of
Dy,,. Since K is a subgroup of index 2 in G, we have -2 = aza™! = 27!
for all a € H,x € K. Hence, a’?za™! = az~'. As |H| = 2, a®> = 1
or a = a~ ', we have a’za™! = za and za = az~'. Consequently, the
isomorphism of Dy,, with Z,, x4 Z is given by the mapping x — r and
a — m.



