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(1a) Given that A,B are subgroups of G such that A ⊆ NG(B). We first show
that A ∩ B C A. Let g ∈ A ∩ B and a ∈ A then, clearly aga−1 ∈ A
and as A ⊆ NG(B), aBa−1 = B for every a ∈ A one has, aga−1 ∈
B as well. Thus A ∩ B C A. Now, AB = {ab | a ∈ A, b ∈ B} is a
group as e ∈ AB, for a1b1, a2b2 ∈ AB, a1b1a2b2 = a1a2(a−12 b1a2)b2 =
a1a2b3b2 where a−12 b1a2 = b3 ∈ B and finally, ab(a0b0)−1 = abb−10 a−10 =
aa−10 (a0bb

−1
0 a−10 ) = aa−10 b1 ∈ AB where a0bb

−1
0 a−10 = b1 ∈ B. Also,

B C AB since abB(ab)−1 = abBb−1a−1 = aBa−1 = B as A ⊆ NG(B).
We now define φ : A/A ∩ B −→ AB/B as φ(aA ∩ B) = aB. This ,map
is well defined for if a−11 a2 ∈ A ∩ B then a−11 a2 ∈ B. It also maps cosets
to cosets, in fact, if a1, a2 ∈ aA ∩ B then a−11 a2 ∈ B so that a1, a2 ∈ aB.
Observe that φ is a homomorphism, φ((aA∩B)(bA∩B)) = φ(abA∩B) =
abB = aB bB = φ(aA ∩ B)φ(bA ∩ B). It remains to show that φ is a
bijection. Suppose φ(aA ∩ B) = φ(bA ∩ B) =⇒ aB = bB =⇒ a−1b ∈ B
but a, b ∈ A implies a−1b ∈ A. So, a−1b ∈ A ∩ B =⇒ aA ∩ B = bA ∩ B.
This proves injection. Suppose gB ∈ AB/B, this implies g = ab for some
a ∈ A, b ∈ B so that gB = abB = aB =⇒ gB = φ(aA ∩ B). Thus, φ is a
surjection and hence an isomorphism.

(1b) N C G with |G/N | = p and H 6 G. Suppose H * N . As N is normal in
G, and H is a subgroup of G, we conclude H ⊆ NG(N), NH 6 G and by
1(a) H ∩N is normal in H. Now, p = [G : N ] = [G : NH][NH : N ]. We
claim that [NH : N ] = p so that [G : NH] = 1 giving G = NH. Suppose
[NH : N ] = 1.cOne has in the finite order case, by the isomorphism in
(1a), |NH| = |N ||H|/|N ∩H| =⇒ |H| = |H ∩N |. This gives H/H ∩N is
trivial, i.e., H = H ∩N ⊆ N . This is a contradiction to our assumption
H * N . Thus, G = NH and [H : H ∩N ] = [NH : N ] = p.

(2a) Statement of Cayley’s theorem: Any group G is isomorphic to a subgroup
of a permutation group.
Proof : Let G be a group. Let F be the set of all permutations (one-one
functions) on elements of G. Then F is a group with the groups operation
being function composition. Indeed, Function composition is associative
and closed, the identity map being one-one belongs to F , for f ∈ F , if
f(x) = y then the inverse of f is f−1 which maps f−1(y) = x. Clearly,
f−1 ∈ F . Thus, F is a group. Now, for any element g ∈ G, consider the
map fg(x) = gx for all x ∈ G. One has fg ∈ F . Further, as gh ∈ G, we
have fgh ∈ F and also fe ∈ F where e is the identity in G. Observe that
fgh(x) = ghx = g(hx) = g(fh(x)) = fgfh(x). Thus the set {fg | g ∈ G}
is a subset of F which is closed and so is a subgroup of F . Clearly, G is
isomorphic to this subgroup.
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(2b) Let G be a finite group of order n, p be the smallest prime dividing n and
let N be a subgroup of G of index p. To show that N CG. Now, G acts
on the left coset space G/N by left multiplication, g · aN = gaN . As the
index is p, we get a homomorphism φ of G into Sp, the symmetric group
on p elements. The kernel K of φ is the set of all elements of G inducing
trivial action on G/N and so K ⊂ N . One has G/K is isomorphic to a
subgroup of Sp. This implies its order is a divisor of p!. But the order of
G/K also divides G and as p is the smallest prime dividing o(G), we have
o(G/K) = p. One has p = [G : K] = [G : N ][N : K] = p[N : K] =⇒ [N :
K] = 1, so that N = K is normal subgroup of G.

(3a) We exhibit a one-to-one correspondence between Orb(x) and the left cosets
of Gx in G. To the coset gGx ∈ G/Gx, we associate the element gx ∈
Orb(x). This association is well defined for, if gGx = hGx then, g−1h ∈
Gx =⇒ g−1hx = x =⇒ hx = gx. Now, suppose gx = hx, then g−1hx =
x =⇒ g−1h ∈ Gx =⇒ gGx = hGx. Thus, the association is one-to-
one. If h ∈ Orb(x) then, h = gx for some g ∈ G so that the coset gGx
gets associated to h. This proves surjection. We thus have a one-one
correspondence between two finite sets which implies that they have the
same cardinality.

(3b) Let n be the number of orbits of G-action on X. By orbit stabilizer
theorem the size of an orbit O is given by |O| = |G|/|Gx| for some x ∈ O
where Gx = {g ∈ G | g · x = x}. This implies |Gx| = |G|/|O|. Taking sum
over x ∈ O,

∑
x∈O |Gx| = |O||G|/|O| = |G|. Thus the sum over all orbits

is given by
∑
x∈X |Gx| = |G|n =⇒ n =

∑
x∈X |Gx|/|G|. Consider the set

G×X := {(g, x) | g ∈ G, x ∈ X} and let G0 := {(g, x) | g ·x = x} ⊂ G×X.
Then |G0| =

∑
x∈X |Gx| =

∑
g∈G |Xg| where Xg = {x ∈ X | g · x = x}.

Thus, n =
∑
g∈X |Xg|/|G|.

(4a) Statement: Let G be a finite group. The action of G on itself by conjuga-
tion partitions G into disjoint conjugacy classes. Let g1, ..., gr be the repre-
sentatives of the distinct conjugacy classes of G not contained in the center

Z(G) of G. Then the class equation is given by |G| = |Z(G)| +
r∑
i=1

[G :

CG(gi)] where CG(gi) is the centralizer of gi in G.
Proof : An element {x} is a conjugacy class of size 1 if and only if x ∈ Z(G).
Let Z(G) = {e, z1, ..., zm} and let O1, ...,Or be the conjugacy classes of G
not contained in Z(G) having g1, ..., gr as the respective representatives.
Then {{e}, {z1}, ..., {zm}, H1, ...,Hr} gives a partition of G. We thus have

|G| =
m∑
i=1

1 +
r∑
i=1

|Hi| = |Z(G)|+
r∑
i=1

[G : CG(gi)].

(4b) (i) We prove this using induction on |G| = n. As p | n, when |G| =
n = p, any element of G has order p. Now suppose |G| = n0 > p
with p | n0 and we asuume the induction hypothesis that for a group
G with order n < n0 such that p | n, G has an element of order p.
Since |G| = n0 is not a prime, G has a nontrivial proper subgroup
H. We have |G| = |H| · [G : H] which implies that either p | |H|
or p | [G : H]. If p | |H|, by induction hypothesis we are done. We
show that the other possibility does not occur. The center Z(G) is a
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proper subgroup of G. For each g ∈ G, the centralizer ZG(g) = {h ∈
G | hg = gh} of g in G is a proper subgroup of G if g /∈ Z(G). If
p | |ZG(g)| for some g /∈ Z(G), we are done by induction hypothesis.
Also, if p | |Z(G)|, we are done. Now, if the conjugacy classes of size
greater than 1 are represented by g1, ..., gr, by class equation we have
|G| = |Z(G)|+

∑r
i=1[G : ZG(gi)] = |Z(G)|+

∑r
i=1 |G|/|ZG(gi)|. The

case when p does not divide any |ZG(gi)| results in each index [G :
ZG(gi)] being divisible by p. Hence, the remaining term |Z(G)| will
also be divisible by p. That is either p divides |Z(G)| or p | |ZG(gi)|
for some g /∈ Z(G). We are done here by induction hypothesis.

(ii) G acts on itself by self conjugation. Let O1, ...,Or be the various
distinct orbits of G. AsG is a p-group, the order of each orbit is either
1 or power of p. By class equation |G| =

∑r
i=1 |Oi|. The conjugacy

classes having single elements are those of elements belonging to the
center Z(G). Now, LHS is divisible by p and so should be RHS.
Thus, the number of single element conjugacy classes is a multiple of
p, giving a nontrivial center.

(5a) Sylow’s first theorem:Let G be a finite group. If p is a prime divisor of |G|
then there exists a p-Sylow subgroup of G.
Sylow’s second theorem: Let G be a group of order pnq where p is a prime
not dividing q. If P is a p-Sylow subgroup of G and H is any subgroup of
G of order a power of p then H ⊆ xPx−1 for some x ∈ G. In particular,
any two p-Sylow subgroups of G are conjugates.
Sylow’s third theorem: The number of p-Sylow subgroups of G divides |G|
and is of the form 1 + kp for some non-negative integer k.

(5b) Let G be a group of order 224 = 25 · 7. The number n2 of 2-Sylow
subgroups is such that n2 | 7 and n2 ≡ 1(mod 2). Similarly, the number
n7 of 7-Sylow subgroups of G is such that n7 | 25 and n7 ≡ 1(mod 7).
Thus n2 = 1 or 7 and n7 = 1 or 8. Suppose G was simple, then n7 = 8
and n2 = 7. Then there are (7 − 1) · 8 = 48 elements of order 7 and
(25− 1) · 7 = 31 · 7 = 217 elements of order 2 in G. This gives us a total of
266 elements in G including identity which is a contradiction to |G| = 224.
Hence, G is not simple as we must have either n2 = 1 or n7 = 1.

(6a) Let G = A5 then, |G| = 60 = 22 · 3 · 5. By Sylow’s third theorem we have
n3 | 22 · 5 and n3 ≡ 1(mod 3), so that n3 ∈ {1, 4, 10}. But G contains 20
elements of order 3 (5C3) which implies n3 = 10. Let n5 be the number
of 5-Sylow subgroups of A5 then, n5 | 22 · 3 and n5 ≡ 1(mod 5) so that
n5 ∈ {1, 6}. But A5 has 24 elements of order 5, giving n5 = 6. Finally,
let n2 be the number of 2-Sylow subgroups of A5. Then, n2 | 3 · 5 and
n2 ≡ 1(mod 2) so that n2 ∈ {1, 3, 5, 15}. Now, A5 has 15 elements of order
5 which implies n2 ∈ {5, 15}. If n2 = 15 and H is a 2-Sylow subgroup of A5

then, as A5 acts on the 2-Sylow subgroups by conjugation, the stabilizer
Stab(H) of H has index 15 in A5. This implies H = Stab(H) = NA5(H).
This is not true as (1, 2, 3) ∈ NA5

(H) rH. Hence, n2 = 5.

(6b) The 3-Sylow and 5-Sylow subgroups of S5 are contained in A5 so that
n3 = 10 and n5 = 6. A 2-Sylow subgroup of S5 has order 8. One has
n2 | 15 and n2 ≡ 1(mod2) so that n2 ∈ {1, 3, 5, 15} and as in the case of
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A5, n2 ∈ {5, 15}. Permutation on the set {1, 2, 3, 4} gives a copy of D8

inside S5 which is a 2-Sylow subgroup of S5. Thus all 2-Sylow subgroups
are isomorphic to D8. Now, 4 elements can be chosen in 5 distinct ways
from {1, 2, 3, 4, 5}. Further, for each choice of 4 elements we have 3 distinct
dihedral groups (cyclic permutations results in the same copy of D8 and
so does orderings of the form 1,2,3,4 and 1,4,3,2). We then have n2 =
5 · 3 = 15 distinct subgroups of order 8 isomorphic to D8.

(7a) Given two groups H and K with a group homomorphism φ : H −→
Aut(K) then, the semi-direct product of K by H is denoted K oφH and
is defined as the set K ×H together with the operation (k, h) · (k1, h1) =
(kφ(h)k1, hh1) such that (K × H, ·) is a group. Evidently, the group
operation is very much dependent on the homomorphism φ.

(7b) Let K = Zn =< x > and H = Z2 =< a >. Consider the homomorphism
φ : H −→ Aut(K) given by φ(a) = φa where φa(x) = axa−1 for x ∈ K. It
is easy to see that φ is a group homomorphism and the semidirect product
G = KoφH is a group with the group operation as in (7a). We assert that
D2n

∼= G. Let {(r,m) | rn = m2 = 1, rm = mr−1} be the presentation of
D2n. Since K is a subgroup of index 2 in G, we have a · x = axa−1 = x−1

for all a ∈ H,x ∈ K. Hence, a2xa−1 = ax−1. As |H| = 2, a2 = 1
or a = a−1, we have a2xa−1 = xa and xa = ax−1. Consequently, the
isomorphism of D2n with Zn oφ Z2 is given by the mapping x 7−→ r and
a 7−→ m.
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